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Abstract—The stereoselective synthesis of 22-oxacalcitriol (OCT) has been achieved. The triene system was introduced using the
Lythgoe–Hoffmann La Roche convergent Wittig–Horner approach to couple ketoester 7 with A ring phosphine oxide 8. The
value of the resulting ester 6 for synthesis of C25-modified OCT analogues is exemplified by the synthesis of 5. © 2002 Published
by Elsevier Science Ltd.

Vitamin D and its metabolites continue to attract a
great deal of interest owing to their potential for the
treatment of rickets, osteoporosis, psoriasis, renal
osteodystrophy, leukaemia, breast cancer, prostate can-
cer, Alzheimer’s disease and AIDS.1 1�,25-Dihydroxy-
vitamin D3 [1, 1�,25-(OH)2-D3, calcitriol], the hormon-
ally active form of vitamin D3

2 (2a, cholecalcif-
erol), besides regulating the metabolism of calcium and
phosphorus, promotes cell differentiation, inhibits the
proliferation of tumour cells, and triggers certain bio-
logical functions related to the immunological system.3

However, the clinical utility of the hormone in the
treatment of cancers and skin disorders is limited by its
hypercalcaemic effects. Accordingly, chemists have pur-
sued the synthesis of analogues of 1 with high cell
differentiating ability and weak calcaemic effects;
known examples include 3 and 4 (Fig. 1). In particular,

1�,25-dihydroxy-22-oxavitamin D3 (3, OCT)4 inhibits
the proliferation of certain cancers,5 is a potent
immunomodulator in vivo, and does not cause
hypercalcaemia.6

Surprisingly, although many synthetic approaches to
OCT have been developed,4,7 few OCT analogues have
been reported.7a,c This means that a synthesis of 3 that
is both convergent and flexible has been lacking.

We have previously published a method for construc-
tion of the 25-hydroxy-22-oxavitamin D3 side chain
that compares favourably with previous methods as
regards efficiency and rapidity.7b However, for the syn-
thesis of OCT analogues modified at C25 we needed to
develop another synthetic approach. This is outlined in
Scheme 1.

Figure 1. The structures of 1�,25-dihydroxyvitamin D3 and some analogues with modified side chains.
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Scheme 1. Retrosynthetic plan.

The synthesis of key intermediate 6 is detailed in
Scheme 2. Diol 11 obtained by degradation of vitamin
D2

8 was converted to ester 12 using our previously
described procedure.7b Removal of the silyl protecting
group of 12 by reaction with HF in acetonitrile at room
temperature, gave alcohol 139 (90%). Finally, oxidation
of 13 with pyridinium dichromate afforded ketone 79

(95%), so setting the stage for the Wittig–Horner reac-
tion with phosphine oxide 8.10 This coupling reaction
between 7 and 8 created the labile triene unit, affording
key intermediate 611 in 93% yield.

Reaction of 6 with MeLi at −78°C, followed by desily-
lation, afforded 22-oxacalcitriol (3)12 in good yield,
while its reaction with PhLi afforded the new OCT
derivative 5.13 Preliminary biological evaluation of this
new vitamin D3 analogue has shown it to have very low

affinity for VDR (0.5% that of calcitriol). Further
biological evaluation is currently underway.

In conclusion, we have developed a convergent synthe-
sis of key intermediate 6, which contains both the
vitamin D triene system and the OCT side chain skele-
ton. We are currently using compound 6 to prepare a
broad range of OCT analogues modified at C25 for
biological evaluation and SAR studies.
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